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Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence
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Probability density functions and conditional averages of velocity gradients derived from upper ocean
observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equa-
tions. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing
on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives
from the ocean observations agree with the forced simulations, although they differ from unforced simulations
reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that
large coherent eddies play only a minor role in generating the observed statistics.
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I. INTRODUCTION When satellite data from the global ocean were combined,
the resulting PDFs were non-Gaussian, due to regional varia-
Statistical properties of turbulent flows, such as probabiltions in velocity variancd?7,8]. When velocities were nor-
ity density functiongPDF9, are important for characterizing malized by their local variances, the PDFs were Gaussian
turbulence. For instance, velocity gradients are directly rel8], at least for well-sampled velocities within three standard
lated to velocity correlations, relative dispersion, and energyéeviations of the mean. Similar results were obtained for
dissipation in the fluid1]. This study evaluates statistics of subsurface floats deployed in the North Atlantic Ocean, al-
turbulence, as observed in recent satellite measurements #fough analysis for velocities more than three standard de-
the upper ocean. Statistics of observed phenomena are coiations from the mean indicated non-Gaussian tglls].
pared with corresponding statistics for the forced two-The Lagrangian statistics of floats are, however, not directly
dimensional Navier-Stokes equations. Our results show thagomparable to the results from the TOPEX altimeter, which
in comparison with unforced decaying turbulence, simplecaptures the Eulerian statistics. In this study, we specifically

forced two-dimensional Navier-Stokes equations providenormalize velocities and velocity gradients by their local
better agreement with ocean observations. variances before computing PDFs and other statistics.

For this analysis, ocean velocities are derived from altim- \We compare observed oceanic PDFs with simulations of

eter data collected by the TOPEX/POSEIDON satellite two-dimensional quasigeostrophic flow. The equations of
which performs repeated measurements of the heigbf ~ motion are

the ocean surface. We use only observations from the

TOPEX altimeter, which has lower noise levels than the ﬁ a_’f”i_‘?_'pi q=DV2q+F 1)
POSEIDON instrument. The geostrophic relation, gt gy dx dIx dy '

=(g/f)dnldy yields the velocity component perpendicular . . 5 5

to the satellite ground track. Surface geostrophic velocitiedvhere the potential vorticityq=—V-4+¢/R°. If the
are characteristic of subsurface flow in the ocg2h This  Rossby radiuRR is large, the second term in the potential
geostrophic flow is typically well represented by two- vprtlcny_ is negllglble and Eq.() is e_;quwalent to two-
dimensional shallow-water equations and resembles twgdimensional Navier-Stokes flow. In this study, we perform
dimensional turbulencg8,4]. The derivative along the satel- simulations of the Navier-Stokes equations. Rapidly varying

lite track, d,v,, yields the transverse velocity gradient. We (white-in-time forcing F is applied through random stirring
compute velocities from consecutive high-frequency altim- O large scales. This forcing resembles wind forcing of the
eter measuremenfS—g|, and then determine velocity gradi- ©¢€an, which varies rapidly in time but slowly in space
ents by computing along track differences over a distance dft2,13. We consider an isotropic, homogeneous, and statis-
12 km. For comparison, the first baroclinic Rossby radiudically stationary state. Simulations use a c_:onyen}mnal pseu-
ranges between 10 km and 80 km between 60° and 10dospectral_ method and second—order d|SS|_pat|on. Results
latitude [9,10], so transverse gradients over 12 km distanceVere obtained on a 10241024 grid with long tlmeaaverag-
are expected to be representative of mesoscale geostrophig. The large-scale Reynolds number %’WL/D
motions. The cross-track, or longitudinal, derivative cannot~5600, whereL~ (box size)/5, is the length scale of the
be determined. Higher-order derivatives are increasingljorcing. Modes are forced at wavelengths between one-
noisy. quarter and one-sixth of the box size. The amplitude of the
Earlier results have shown that velocities typically haveforcing is constant and a random phase is chosen at each
Gaussian distributions within small regions of the oceantime step. Large-scale coherent vortices are clearly visible.
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Further details about the numerics and resulting velocity
PDFs are described elsewhéfet,15.

In many instances the velocity PDF is approximately
Gaussian[16], and this is also the case for the simulated
turbulence her¢l4]. Far more conclusive than the velocity
distribution turns out to be the statistics of velocity deriva-
tives. A number of authors have investigated the velocity
gradients of three-dimensional Navier-Stokes turbulence
[17-25, but here we consider the far less studied two-
dimensional case. Measurements of the transverse velocity
derivatives are presented in Sec. Il. Section Il discusses evi-
dence that large eddies alone provide only a minor contribu- (a)
tion to the observed statistics. Section IV briefly discusses
pertinent differences between forced and unforced turbu-
lence. The last section contains conclusions.

P@y )

Il. PROBABILITY DISTRIBUTION OF VELOCITY
DERIVATIVES

P@, V)

Earlier work based on satellite altimeter data reported
transverse velocity gradient PDFs in small parts of the ocean
[7]. These results differed from gradient PDFs derived for
decaying two-dimensional turbulence, which showed an ap- — Sy
proximate Cauchy distribution during the late stage of the -4 26 0 2¢ 4o
evolution[26,27. The discrepancy is resolved by comparing (b) dy Vy
to simulations of stationary turbulence. . ) )

Figure 1 shows velocity gradient PDFs derived from FIC_;. 1. (a) Global v_arlgnce-normallzed _PDF_ ofthg velocity gra-
ocean observations and simulations. The solid line indicatedient in the ocearisolid line) compared with simulations of two-

the PDF of normalized velocity gradient data derived fromdimensional Navier-Stokes turbulengashed lingon a semiloga-
global satellite altimetry. To determine the oceanic PDF Ve_l’lthmIC scale(b) Same quantities on a linear scale. In both cases, a
' ' aussian and a Cauchy distribution are shown for compafiata

T o IS The osan ADF e v aous 1
. . oints. Data are normalized by the standard deviatioras de-
into 2.5°x2.5° boxes. Data near the equator are omlttecgcribed in the text.
because the geostrophic relationship is weak at low latitudes.
The standard deviation of gradients in each latitudesimulated and observed gradient PDFs appear Gaussian for
longitude box varies from 110 ° s ! near 60° latitude small velocity gradients, up to about one standard deviation.
up to 6.4<10 ° s ! near 10° latitude, with a median value For large gradients they decay significantly more slowly than
of 1.9x10°° s—1. To compensate for this geographic do Gaussian tails but substantially faster than the Cauchy
variation, gradients are normalized to have unit standard dedistribution found in simulations of decaying turbulence
viation in each box, and then the PDF is computed from al[26,27]. There is good agreement between observed and
of the normalized gradient data. For comparison, we alsgimulated PDFs up to even the largest fluctuations measured
normalized our PDFs using the mean absolute value of th& the simulation.
velocity gradient; this did not diminish the strong tails of the  Error bars for the PDFs were estimated by grouping the
gradient PDF. The sensitivity of velocity PDF to box size hasdata intoN groups and computing PDFs for each group. The
been explored in previous wofl8], and gradient PDFs are error of the mean PDF is then taken to be the standard de-
expected to show a similar sensitivity. However, increasingviation of the PDF divided by/ﬁ, For this analysisN was
the size of the boxes to 5° by 5° does not measurably affedhe total number of 2.5° boxes for the surveyed ocean or the
the shape of the PDF. number of velocity snapshots for the simulation. Since many
The dashed line in Fig. 1 represents the transverse velo@cean observations are available, statistical errors are ex-
ity gradient PDF from two-dimensional Navier-Stokes turbu-pected to be small compared to systematic errors. In fact, the
lence. The dotted lines represent the narrow Gaussian distrétatistical errors are frequently narrower than the linewidth in
bution and the broader Cauchy distributiéh(x) =c/[7(c?>  Fig. 1. Differences between the two distributions exceed the
+x?)], with long tails. The tails contribute noticeably to the statistical errors and are likely to be due to a number of
standard deviation of the PDF, and therefore the Gaussian factors, including instrumental and atmospheric correction
fitted to the data without requiring unit area and unit standarerrors in the altimeter data, which make the measurements
deviation. This is necessary to make the Gaussian closelyoisy, as well as differences in the physics of two-
approximate the central part of the PDF. Since the Cauchdimensional Navier-Stokes equations compared with the
distribution cannot be normalized by its standard deviationpcean.
the constant is chosen such tha(0) matches. Both the The kurtosisg(flatnes$ (x*)/(x?)? can serve as a quantita-
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tive comparison of the shape of the PDF. In the simulation 10 F— . - - - - -
results, the velocity gradient PDF has a kurtosis of 4.7, indi-
cating clear deviation from a Gaussian distribution. If the 1l

observed ocean PDF is terminated beyond the extent of the
simulated one, at about 4.5 standard deviations, its kurtosis is
also 4.7. This quantitative comparison confirms that the oce-
anic PDF is substantially better matched by the simulation
than by either of the two ideal distributions. 0.01 L
Velocity gradient PDFs depend on the spatial separation
between velocity measurements. The velocity correlations
between two points decrease with distance, and velocities at Ol = = 1
points very far apart can be assumed to be statistically inde-
pendent. The distribution of velocity differences across very
large distances reduces to that of the veloGitith twice the FIG. 2. Probability density function of the velocity gradient in
variancg. The 12 km separation of TOPEX observations issimulations of two-dimensional Navier-Stokes turbulence. The solid
small compared with the decorrelation length scales of windine is for the velocity gradients produced by large coherent vorti-
forcing O(1000 km), and of mesoscale ocean featuresges. The dashed line corresponds to the complete flow field. Both
0O(100 km), so velocities at adjacent observation points argistributions are normalized by the same standard deviation, hence
expected to be strongly correlated. Therefore, to obtain compreserving differences in their width.
parable results from the numerical simulation, we have com-

puted gradient PDFs from velocity differences over asymprapidly decaying tails than do Cauchy distributions. Also, as
totically small separations. For comparison, if we computerjg. 1 makes evident, the simulations of stationary two-

gradient PDFs over progressively larger distances in th@imensional turbulence show far less pronounced tails than a
simulation, then the distribution narrows from its original caychy distribution.

shape(dashed line in Fig. land becomes close to Gaussian.  The discrepancy arises not only in the shape of the distri-
The basic simulations had a large-scale Reynolds numbgjytion but also in its width. A straightforward way of illus-
on the order of 18 while for ocean turbulence a Reynolds trating this is to calculate the velocity field produced by vor-
number of 16 might be typical[28]. Probability density tices with vorticities that exceed twice the root-mean-square
functions were also determined for simulations with loweryg|ye. Figure 2 shows the transverse velocity gradients pro-
and higher Reynolds numbers, using, respectively, lower angyced by these coherent vorticeslid ling). For compari-
higher resolutions, but shorter sampling time. There is N&on, the actual distribution is shown as a dashed line. Clearly
significant change in the shape of the PORS], although  the large coherent vortices do not generate enough interme-
these data do not exclude a weak dependence on Reynolgfate gradients(Nor, for that matter, do they account for
number. The absence of any detectable Reynolds numbgfost of the velocities.Consequently, the distribution of gra-
dependence suggests that the simulation data are close d@ents is poorly accounted for by large-scale coherent
what they look like at substantially higher Reynolds numberygrtices.
The difference in the length of the tails in Fig. 1 may be due The contribution of the small-scale turbulence is also rel-
to the vast difference in Reynolds number, difference in samgyant. This agrees with the basic physical picture, according
pling size, and errors from the numerical differentiation oftg which the late stage of decaying turbulence consists of
data. coherent vortices. Its statistics can therefore be understood in
The real ocean differs from the forced Navier—Stokes SYSterms of them. In the Stationary case, on the other hand7

tem because of the addition of the effect, stratification,  fluctuations over a wide spectrum of spatial scales contribute
three-dimensional motions, and buoyancy. Hence it is surto the gradient statistics.
prising that there is such a close agreement between mea- Available statistical variables from the altimeter are the
surement and simulation. In any case, the agreement betwegg|ocity and the transverse velocity derivative. Hence, one
observation and simulation suggests that the oceanic velociyan study the cross correlation between these two quantities.
statistics may be understood within the framework of tWO'Here, we examine the conditional average of the Squared
dimensional turbulence. velocity gradient as a function of velocity(d,v,)?||vy),
which is the average ofﬁgux)2 over all points with velocity
componenttv, . The slope of (4,v,)?||v,|) is @ measure of
the correlation between the velocity and the transverse ve-
Idealized models of point vortices predict a Cauchy dis-locity derivative. If there were no correlation between the
tribution for the velocity gradients and a Gaussian distribu-velocity at a point and the gradient at the same point, the
tion for the velocity[26,27,30—32 This agrees with results conditional average would be constant for all valuew pf
from decaying two-dimensional turbulen€26,33. Hence, and would be exactly 1 if velocity gradients were normalized
in the late stages of decay, the statistics of velocity gradientby their standard deviation. In contrast, if gradients and ve-
have been successfully understood to result from the far fieltbcities were strongly correlated, as would be expected
of well-separated vortice$26,27. In contrast, PDFs of around an isolated vortex, then the graph for the conditional
ocean surface velocity gradients are observed to have moeverage would have a pronounced slope.

01 ¢

P@, V)

Ill. ROLE OF COHERENT VORTICES
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FIG. 3. Conditional average of transverse velocity gradient with ;: 031 |
velocity, V((d,v4)?/|vyl), for two-dimensional Navier-Stokes a 027 1
(dashed line with error barsnd ocean turbulendsolid line). The 01 | J
conditional average produced by the large vortices in the simulation ———— .
is also showr{dash-dotted ling All three graphs are normalized by 0
. . . . e -3¢ 20 -G 0 c 2c 3o
their respective standard deviations. The thick solid line indicates (b) v v
X 'Xt Vv X

growth proportional to the velocity. The error bars include only the
statistical error expected from averaging of the 32 snapshots, show- F|G, 4. (a) Probability density functions of velocity derivatives
ing twice the standard error of the mean. The inset shows the cofpr forced two-dimensional Navier-Stokes turbulence on a semi-
ditional average of the absolute val(i@,v,||[v,/)- logarithmic scale(b) Same quantities on a linear scale. In both

. anels, the dashed line shows the transverse compaépepnt and
Figure 3 shows the square root of the measured condf Pepen

. . > ) he solid line the longitudinal componenv, . Both are normal-
tional average together with that for tWO'd'mens'onalized by the standard deviation of the transverse compownent

Na\élebr-sr:()kes :jurbuletrjlce.thr thedoc((jaadn, \.Ne. havg nom;]alé ((ayvx)2>. The dotted line is a Gaussian. Transverse and longi-
ized bothv, and dyvy by their standard deviations in eac tudinal gradient PDFs differ from each other in width and shape.

2.5°X2.5° geographic box, because both quantities vary spa-

tially. The axes are labeled in units of their respective stans ohows the conditional average usiIh@UXI instead of
dard deviationsy(vz) and \((4yv,)%). The correlation be- (,v,)2, which is less sensitive to outliers. For small veloci-
tween velocity and its gradient is weak, but the gradientsies, the agreement between observation and simulation is
tend to be higher when the velocity is large. The results argloser and the discrepancy between the large eddy field and
not strongly dependent on the choice of geographic box sizehe other two conditional averages is stronger.

results obtained using 5¢5° boxes are slightly noisier but The deviation of the observed conditional averages from
show the same structure. If oceanic gradients beyond fouhat for coherent vortices strengthens the evidence that the
standard deviations are excluded, which is a fairer comparigradient statistics are unaccounted for by the velocity field
son with the simulation, the conditional average is closer tareated by large-scale coherent eddies. The role of coherent
1. The longitudinal component of the conditional averagevortices in generating the observed velocity statistics is mi-
(not shown exhibits behavior similar to the transverse com-nor. This conclusion cautions against attempts to model oce-
ponent. Also shown in Fig. 3 is the conditional average foranic velocity fields by large eddies.

the velocity field of vortices larger than twice the root-mean-

square vorticity(dash-dotted line As expected there is a IV. FORCED VERSUS UNFORCED TURBULENCE
comparatively strong correlation between velocities and ve-

locity derivatives. At large velocities the slopes of the graphs Although only the transverse velocity component can be
for the coherent vortices and the ocean are similar. This magletermined from altimeter data, simulations also permit us to
indicate influence by large eddies in regions where the veexamine the longitudinal derivativguv, . Figure 4 shows a
locities are high, although no corresponding evidence islear difference between the behavior of the longitudinal and
found in the probability distribution of the gradients. The transverse components. In our forced simulations, the stan-
situation at high velocities is therefore somewhat ambiguousdard deviation of longitudinal fluctuations is about 60% of
For small velocities, which cover most of the area, condi-that for transverse fluctuations. In isotropic and incompress-
tional averages are near 1 for simulatiddsshed lineand ible turbulence there is an exact relation between the stan-
observationgsolid line), indicating that at low velocity, gra- dard deviations of transverse and longitudinal component
dients are almost uncorrelated with velocity. The inset in Fig[34]. With a calculation analogous to the well-known three-
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dimensional casg34], we find in the two-dimensional case while two-dimensional turbulence forced at large scales is
<(ayvx)2)=3<(0xvx)2>. Hence, the standard deviation for the governed by a direct enstrophy cascadeurther study is
longitudinal component is ¥B~58% of that for the trans- needed to determine how the statistics may depend on the
verse component. This agrees with the measured value ¢¢mporal and spatial structure of the forcing.
60% in the simulation.

Longitudinal and transverse PDFs differ not only by a V. CONCLUSIONS
factor of \/3 in their standard deviation, but also in their

shape. While the transverse gradients strongly deviate from 3 In conclusion, we find that transverse velocity derivative
Gaussian distribution, the longitudinal gradient PDF more DFs from observed upper ocean turbulence agree closely

closelv approximates a Gaussian. The kurtosis of the lon with forced two-dimensional simulations but differ from pre-
Yy app : .g'viously reported unforced turbulence. The forcing diminishes

f/lja(?blag(;o3mt%(;r|;eg It?u::.?réiii\a/ztrig“g!%q(:Igﬁz:}:Oi?]el(sigustilgthe role of coherent vortices in the pertinent statistics. The
P » Implying istribution and cross correlation of velocity derivatives pro-

large longitudinal gradients occur less frequently than d ide clear evidence that large coherent eddies play only a

Ec:?he t:;r;?/\(/jgseea%rda?(;imi?ﬁ dli:r?arll Sc'(r)nrﬁleor?:r']?;'\;?ge dﬁsznﬂgﬂfelgwinor role in generating the observed statistics. Further study
9 P f forced two-dimensional turbulence appears likely to shed

I|I_<e_Cauchy dlstr|bl_1t|ons{albe|t with different _standard de- light on the character of mesoscale turbulence in the ocean.
viationg [26]. Also, in the late stage of decaying turbulence,

the transverse component is distributed in the same way as
the longitudinal componer6]. This is yet another differ-
ence between forced and unforced turbulence. The work of N.S. was supported by a grant from the Re-

Overall, our study establishes a clear distinction betweesearch Grants Council of the Hong Kong Special Adminis-
the gradient statistics of unforcefreely decaying and trative Region, ChindRGC Ref. No. CUHK4119/98R by
forced (stationary turbulence. The presence of forcing not the Chinese University of Hong Kong, and by the Massachu-
only influences the properties of large-scale vortices but alssetts Institute of Technology. S.T.G. was supported by NASA
changes the distribution of eddies over different scalesthrough the Jason Altimeter Science Working Te&iRL
(Freely decaying turbulence has an inverse energy casca@ntract No. 1204910
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