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Statistics of velocity gradients in two-dimensional Navier-Stokes and ocean turbulence
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Probability density functions and conditional averages of velocity gradients derived from upper ocean
observations are compared with results from forced simulations of the two-dimensional Navier-Stokes equa-
tions. Ocean data are derived from TOPEX satellite altimeter measurements. The simulations use rapid forcing
on large scales, characteristic of surface winds. The probability distributions of transverse velocity derivatives
from the ocean observations agree with the forced simulations, although they differ from unforced simulations
reported elsewhere. The distribution and cross correlation of velocity derivatives provide clear evidence that
large coherent eddies play only a minor role in generating the observed statistics.
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I. INTRODUCTION

Statistical properties of turbulent flows, such as proba
ity density functions~PDFs!, are important for characterizin
turbulence. For instance, velocity gradients are directly
lated to velocity correlations, relative dispersion, and ene
dissipation in the fluid@1#. This study evaluates statistics o
turbulence, as observed in recent satellite measuremen
the upper ocean. Statistics of observed phenomena are
pared with corresponding statistics for the forced tw
dimensional Navier-Stokes equations. Our results show t
in comparison with unforced decaying turbulence, sim
forced two-dimensional Navier-Stokes equations prov
better agreement with ocean observations.

For this analysis, ocean velocities are derived from alt
eter data collected by the TOPEX/POSEIDON satell
which performs repeated measurements of the heighth of
the ocean surface. We use only observations from
TOPEX altimeter, which has lower noise levels than t
POSEIDON instrument. The geostrophic relationvx
5(g/ f )]h/]y yields the velocity component perpendicul
to the satellite ground track. Surface geostrophic veloci
are characteristic of subsurface flow in the ocean@2#. This
geostrophic flow is typically well represented by tw
dimensional shallow-water equations and resembles t
dimensional turbulence@3,4#. The derivative along the sate
lite track, ]yvx , yields the transverse velocity gradient. W
compute velocitiesv from consecutive high-frequency altim
eter measurements@5–8#, and then determine velocity grad
ents by computing along track differences over a distanc
12 km. For comparison, the first baroclinic Rossby rad
ranges between 10 km and 80 km between 60° and
latitude @9,10#, so transverse gradients over 12 km distan
are expected to be representative of mesoscale geostro
motions. The cross-track, or longitudinal, derivative can
be determined. Higher-order derivatives are increasin
noisy.

Earlier results have shown that velocities typically ha
Gaussian distributions within small regions of the oce
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When satellite data from the global ocean were combin
the resulting PDFs were non-Gaussian, due to regional va
tions in velocity variance@7,8#. When velocities were nor-
malized by their local variances, the PDFs were Gauss
@8#, at least for well-sampled velocities within three standa
deviations of the mean. Similar results were obtained
subsurface floats deployed in the North Atlantic Ocean,
though analysis for velocities more than three standard
viations from the mean indicated non-Gaussian tails@11#.
The Lagrangian statistics of floats are, however, not dire
comparable to the results from the TOPEX altimeter, wh
captures the Eulerian statistics. In this study, we specific
normalize velocities and velocity gradients by their loc
variances before computing PDFs and other statistics.

We compare observed oceanic PDFs with simulations
two-dimensional quasigeostrophic flow. The equations
motion are

S ]

]t
1

]c

]y

]

]x
2

]c

]x

]

]yDq5D¹2q1F, ~1!

where the potential vorticityq52¹2c1c/R2. If the
Rossby radiusR is large, the second term in the potenti
vorticity is negligible and Eq.~1! is equivalent to two-
dimensional Navier-Stokes flow. In this study, we perfo
simulations of the Navier-Stokes equations. Rapidly vary
~white-in-time! forcing F is applied through random stirring
on large scales. This forcing resembles wind forcing of
ocean, which varies rapidly in time but slowly in spa
@12,13#. We consider an isotropic, homogeneous, and sta
tically stationary state. Simulations use a conventional ps
dospectral method and second-order dissipation. Res
were obtained on a 102431024 grid with long time averag

ing. The large-scale Reynolds number Re5A^vW &2L/D
'5600, whereL'(box size)/5, is the length scale of th
forcing. Modes are forced at wavelengths between o
quarter and one-sixth of the box size. The amplitude of
forcing is constant and a random phase is chosen at e
time step. Large-scale coherent vortices are clearly visi
©2002 The American Physical Society07-1
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Further details about the numerics and resulting velo
PDFs are described elsewhere@14,15#.

In many instances the velocity PDF is approximate
Gaussian@16#, and this is also the case for the simulat
turbulence here@14#. Far more conclusive than the veloci
distribution turns out to be the statistics of velocity deriv
tives. A number of authors have investigated the veloc
gradients of three-dimensional Navier-Stokes turbule
@17–25#, but here we consider the far less studied tw
dimensional case. Measurements of the transverse velo
derivatives are presented in Sec. II. Section III discusses
dence that large eddies alone provide only a minor contr
tion to the observed statistics. Section IV briefly discus
pertinent differences between forced and unforced tur
lence. The last section contains conclusions.

II. PROBABILITY DISTRIBUTION OF VELOCITY
DERIVATIVES

Earlier work based on satellite altimeter data repor
transverse velocity gradient PDFs in small parts of the oc
@7#. These results differed from gradient PDFs derived
decaying two-dimensional turbulence, which showed an
proximate Cauchy distribution during the late stage of
evolution@26,27#. The discrepancy is resolved by compari
to simulations of stationary turbulence.

Figure 1 shows velocity gradient PDFs derived fro
ocean observations and simulations. The solid line indica
the PDF of normalized velocity gradient data derived fro
global satellite altimetry. To determine the oceanic PDF,
locity gradient data drawn from latitudes between 10° a
60° N and between 10° and 60° S are sorted geographic
into 2.5°32.5° boxes. Data near the equator are omit
because the geostrophic relationship is weak at low latitu
The standard deviation of gradients in each latitu
longitude box varies from 1.431025 s21 near 60° latitude
up to 6.431025 s21 near 10° latitude, with a median valu
of 1.931025 s21. To compensate for this geograph
variation, gradients are normalized to have unit standard
viation in each box, and then the PDF is computed from
of the normalized gradient data. For comparison, we a
normalized our PDFs using the mean absolute value of
velocity gradient; this did not diminish the strong tails of t
gradient PDF. The sensitivity of velocity PDF to box size h
been explored in previous work@8#, and gradient PDFs ar
expected to show a similar sensitivity. However, increas
the size of the boxes to 5° by 5° does not measurably af
the shape of the PDF.

The dashed line in Fig. 1 represents the transverse ve
ity gradient PDF from two-dimensional Navier-Stokes turb
lence. The dotted lines represent the narrow Gaussian d
bution and the broader Cauchy distribution,P(x)5c/@p(c2

1x2)#, with long tails. The tails contribute noticeably to th
standard deviation of the PDF, and therefore the Gaussia
fitted to the data without requiring unit area and unit stand
deviation. This is necessary to make the Gaussian clo
approximate the central part of the PDF. Since the Cau
distribution cannot be normalized by its standard deviati
the constantc is chosen such thatP(0) matches. Both the
02630
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simulated and observed gradient PDFs appear Gaussia
small velocity gradients, up to about one standard deviat
For large gradients they decay significantly more slowly th
do Gaussian tails but substantially faster than the Cau
distribution found in simulations of decaying turbulen
@26,27#. There is good agreement between observed
simulated PDFs up to even the largest fluctuations meas
in the simulation.

Error bars for the PDFs were estimated by grouping
data intoN groups and computing PDFs for each group. T
error of the mean PDF is then taken to be the standard
viation of the PDF divided byAN. For this analysis,N was
the total number of 2.5° boxes for the surveyed ocean or
number of velocity snapshots for the simulation. Since ma
ocean observations are available, statistical errors are
pected to be small compared to systematic errors. In fact,
statistical errors are frequently narrower than the linewidth
Fig. 1. Differences between the two distributions exceed
statistical errors and are likely to be due to a number
factors, including instrumental and atmospheric correct
errors in the altimeter data, which make the measurem
noisy, as well as differences in the physics of tw
dimensional Navier-Stokes equations compared with
ocean.

The kurtosis~flatness! ^x4&/^x2&2 can serve as a quantita

FIG. 1. ~a! Global variance-normalized PDF of the velocity gr
dient in the ocean~solid line! compared with simulations of two
dimensional Navier-Stokes turbulence~dashed line! on a semiloga-
rithmic scale.~b! Same quantities on a linear scale. In both case
Gaussian and a Cauchy distribution are shown for comparison~dot-
ted lines!. The ocean PDF is averaged over about 133106 data
points. Data are normalized by the standard deviations, as de-
scribed in the text.
7-2
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STATISTICS OF VELOCITY GRADIENTS IN TWO- . . . PHYSICAL REVIEW E 65 026307
tive comparison of the shape of the PDF. In the simulat
results, the velocity gradient PDF has a kurtosis of 4.7, in
cating clear deviation from a Gaussian distribution. If t
observed ocean PDF is terminated beyond the extent of
simulated one, at about 4.5 standard deviations, its kurtos
also 4.7. This quantitative comparison confirms that the o
anic PDF is substantially better matched by the simulat
than by either of the two ideal distributions.

Velocity gradient PDFs depend on the spatial separa
between velocity measurements. The velocity correlati
between two points decrease with distance, and velocitie
points very far apart can be assumed to be statistically in
pendent. The distribution of velocity differences across v
large distances reduces to that of the velocity~with twice the
variance!. The 12 km separation of TOPEX observations
small compared with the decorrelation length scales of w
forcing O(1000 km), and of mesoscale ocean featur
O(100 km), so velocities at adjacent observation points
expected to be strongly correlated. Therefore, to obtain c
parable results from the numerical simulation, we have co
puted gradient PDFs from velocity differences over asym
totically small separations. For comparison, if we comp
gradient PDFs over progressively larger distances in
simulation, then the distribution narrows from its origin
shape~dashed line in Fig. 1! and becomes close to Gaussia

The basic simulations had a large-scale Reynolds num
on the order of 104, while for ocean turbulence a Reynold
number of 107 might be typical @28#. Probability density
functions were also determined for simulations with low
and higher Reynolds numbers, using, respectively, lower
higher resolutions, but shorter sampling time. There is
significant change in the shape of the PDFs@29#, although
these data do not exclude a weak dependence on Reyn
number. The absence of any detectable Reynolds num
dependence suggests that the simulation data are clos
what they look like at substantially higher Reynolds numb
The difference in the length of the tails in Fig. 1 may be d
to the vast difference in Reynolds number, difference in sa
pling size, and errors from the numerical differentiation
data.

The real ocean differs from the forced Navier–Stokes s
tem because of the addition of theb effect, stratification,
three-dimensional motions, and buoyancy. Hence it is s
prising that there is such a close agreement between m
surement and simulation. In any case, the agreement betw
observation and simulation suggests that the oceanic velo
statistics may be understood within the framework of tw
dimensional turbulence.

III. ROLE OF COHERENT VORTICES

Idealized models of point vortices predict a Cauchy d
tribution for the velocity gradients and a Gaussian distrib
tion for the velocity@26,27,30–32#. This agrees with results
from decaying two-dimensional turbulence@26,33#. Hence,
in the late stages of decay, the statistics of velocity gradie
have been successfully understood to result from the far fi
of well-separated vortices@26,27#. In contrast, PDFs of
ocean surface velocity gradients are observed to have m
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rapidly decaying tails than do Cauchy distributions. Also,
Fig. 1 makes evident, the simulations of stationary tw
dimensional turbulence show far less pronounced tails tha
Cauchy distribution.

The discrepancy arises not only in the shape of the dis
bution but also in its width. A straightforward way of illus
trating this is to calculate the velocity field produced by vo
tices with vorticities that exceed twice the root-mean-squ
value. Figure 2 shows the transverse velocity gradients p
duced by these coherent vortices~solid line!. For compari-
son, the actual distribution is shown as a dashed line. Cle
the large coherent vortices do not generate enough inter
diate gradients.~Nor, for that matter, do they account fo
most of the velocities.! Consequently, the distribution of gra
dients is poorly accounted for by large-scale coher
vortices.

The contribution of the small-scale turbulence is also r
evant. This agrees with the basic physical picture, accord
to which the late stage of decaying turbulence consists
coherent vortices. Its statistics can therefore be understoo
terms of them. In the stationary case, on the other ha
fluctuations over a wide spectrum of spatial scales contrib
to the gradient statistics.

Available statistical variables from the altimeter are t
velocity and the transverse velocity derivative. Hence, o
can study the cross correlation between these two quanti
Here, we examine the conditional average of the squa
velocity gradient as a function of velocity,^(]yvx)

2uuvxu&,
which is the average of (]yvx)

2 over all points with velocity
component6vx . The slope of̂ (]yvx)

2uuvxu& is a measure of
the correlation between the velocity and the transverse
locity derivative. If there were no correlation between t
velocity at a point and the gradient at the same point,
conditional average would be constant for all values ofvx
and would be exactly 1 if velocity gradients were normaliz
by their standard deviation. In contrast, if gradients and
locities were strongly correlated, as would be expec
around an isolated vortex, then the graph for the conditio
average would have a pronounced slope.

FIG. 2. Probability density function of the velocity gradient
simulations of two-dimensional Navier-Stokes turbulence. The s
line is for the velocity gradients produced by large coherent vo
ces. The dashed line corresponds to the complete flow field. B
distributions are normalized by the same standard deviation, he
preserving differences in their width.
7-3
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NORBERT SCHORGHOFER AND SARAH T. GILLE PHYSICAL REVIEW E65 026307
Figure 3 shows the square root of the measured co
tional average together with that for two-dimension
Navier-Stokes turbulence. For the ocean, we have norm
ized bothvx and ]yvx by their standard deviations in eac
2.5°32.5° geographic box, because both quantities vary s
tially. The axes are labeled in units of their respective st

dard deviationsA^vx
2& andA^(]yvx)

2&. The correlation be-
tween velocity and its gradient is weak, but the gradie
tend to be higher when the velocity is large. The results
not strongly dependent on the choice of geographic box s
results obtained using 5°35° boxes are slightly noisier bu
show the same structure. If oceanic gradients beyond
standard deviations are excluded, which is a fairer comp
son with the simulation, the conditional average is close
1. The longitudinal component of the conditional avera
~not shown! exhibits behavior similar to the transverse co
ponent. Also shown in Fig. 3 is the conditional average
the velocity field of vortices larger than twice the root-mea
square vorticity~dash-dotted line!. As expected there is a
comparatively strong correlation between velocities and
locity derivatives. At large velocities the slopes of the grap
for the coherent vortices and the ocean are similar. This m
indicate influence by large eddies in regions where the
locities are high, although no corresponding evidence
found in the probability distribution of the gradients. Th
situation at high velocities is therefore somewhat ambiguo
For small velocities, which cover most of the area, con
tional averages are near 1 for simulations~dashed line! and
observations~solid line!, indicating that at low velocity, gra
dients are almost uncorrelated with velocity. The inset in F

FIG. 3. Conditional average of transverse velocity gradient w

velocity, A^(]yvx)
2uuvxu&, for two-dimensional Navier-Stoke

~dashed line with error bars! and ocean turbulence~solid line!. The
conditional average produced by the large vortices in the simula
is also shown~dash-dotted line!. All three graphs are normalized b
their respective standard deviations. The thick solid line indica
growth proportional to the velocity. The error bars include only t
statistical error expected from averaging of the 32 snapshots, sh
ing twice the standard error of the mean. The inset shows the
ditional average of the absolute value^u]yvxuuuvxu&.
02630
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3 shows the conditional average usingu]yvxu instead of
(]yvx)

2, which is less sensitive to outliers. For small veloc
ties, the agreement between observation and simulatio
closer and the discrepancy between the large eddy field
the other two conditional averages is stronger.

The deviation of the observed conditional averages fr
that for coherent vortices strengthens the evidence that
gradient statistics are unaccounted for by the velocity fi
created by large-scale coherent eddies. The role of cohe
vortices in generating the observed velocity statistics is
nor. This conclusion cautions against attempts to model o
anic velocity fields by large eddies.

IV. FORCED VERSUS UNFORCED TURBULENCE

Although only the transverse velocity component can
determined from altimeter data, simulations also permit us
examine the longitudinal derivative]xvx . Figure 4 shows a
clear difference between the behavior of the longitudinal a
transverse components. In our forced simulations, the s
dard deviation of longitudinal fluctuations is about 60%
that for transverse fluctuations. In isotropic and incompre
ible turbulence there is an exact relation between the s
dard deviations of transverse and longitudinal compon
@34#. With a calculation analogous to the well-known thre

h

n

s

w-
n-

FIG. 4. ~a! Probability density functions of velocity derivative
for forced two-dimensional Navier-Stokes turbulence on a se
logarithmic scale.~b! Same quantities on a linear scale. In bo
panels, the dashed line shows the transverse component]yvx , and
the solid line the longitudinal component]xvx . Both are normal-
ized by the standard deviation of the transverse componens

5A^(]yvx)
2&. The dotted line is a Gaussian. Transverse and lon

tudinal gradient PDFs differ from each other in width and shap
7-4
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dimensional case@34#, we find in the two-dimensional cas
^(]yvx)

2&53^(]xvx)
2&. Hence, the standard deviation for th

longitudinal component is 1/A3'58% of that for the trans-
verse component. This agrees with the measured valu
60% in the simulation.

Longitudinal and transverse PDFs differ not only by
factor of A3 in their standard deviation, but also in the
shape. While the transverse gradients strongly deviate fro
Gaussian distribution, the longitudinal gradient PDF mo
closely approximates a Gaussian. The kurtosis of the lo
tudinal component is 3.5, substantially closer to the Gaus
value of 3 than is the transverse component, implying t
large longitudinal gradients occur less frequently than
large transverse gradients. For simple point-vortex mod
both transverse and longitudinal components are distribu
like Cauchy distributions~albeit with different standard de
viations! @26#. Also, in the late stage of decaying turbulenc
the transverse component is distributed in the same wa
the longitudinal component@26#. This is yet another differ-
ence between forced and unforced turbulence.

Overall, our study establishes a clear distinction betw
the gradient statistics of unforced~freely decaying! and
forced ~stationary! turbulence. The presence of forcing n
only influences the properties of large-scale vortices but a
changes the distribution of eddies over different sca
~Freely decaying turbulence has an inverse energy cas
es

J

ea

og

-
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while two-dimensional turbulence forced at large scales
governed by a direct enstrophy cascade.! Further study is
needed to determine how the statistics may depend on
temporal and spatial structure of the forcing.

V. CONCLUSIONS

In conclusion, we find that transverse velocity derivati
PDFs from observed upper ocean turbulence agree clo
with forced two-dimensional simulations but differ from pr
viously reported unforced turbulence. The forcing diminish
the role of coherent vortices in the pertinent statistics. T
distribution and cross correlation of velocity derivatives pr
vide clear evidence that large coherent eddies play on
minor role in generating the observed statistics. Further st
of forced two-dimensional turbulence appears likely to sh
light on the character of mesoscale turbulence in the oce
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